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Abstract

In the context of eternal inflation we discuss the fate of Λ = 0 bubbles

when they collide with Λ < 0 crunching bubbles. When the Λ = 0 bubble is

supersymmetric, it is not completely destroyed by collisions. If the domain wall

separating the bubbles has higher tension than the BPS bound, it is expelled

from the Λ = 0 bubble and does not alter its long time behavior. If the domain

wall saturates the BPS bound, then it stays inside the Λ = 0 bubble and removes

a finite fraction of future infinity. In this case, the crunch singularity is hidden

behind the horizon of a stable hyperbolic black hole.
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1. Introduction

There is now strong evidence for the existence of a “landscape” of vacua in string

theory [1]. These include states with positive, negative and zero cosmological constant Λ.

In a static situation the negative Λ vacua are associated to Anti de Sitter (AdS) geometries,

and the zero Λ ones to flat space. Both can be supersymmetric. The positive Λ states

correspond to de Sitter (dS) geometries and describe inflating universes.

It is natural to ask about the ultimate fate of a universe that starts in an initial

positive Λ state. This universe will inflate, but bubbles of other vacua will nucleate within

it. Typically the nucleation rate will be slow enough so that inflation will be eternal

and some parts of the universe will continue inflating forever. The bubbles of Λ = 0

supersymmetric vacua that are nucleated seem very stable and so will last forever. The

bubbles of Λ < 0 vacua, even if supersymmetric, are not. In this cosmological context they

end in a time of order (−Λ)−1/2 in a curvature singularity we will call a crunch [2].

Bubbles do not evolve in isolation; they collide with each other. In fact each bubble

collides with an infinite number of other bubbles [3]. At first sight it appears that the

collision of a crunching bubble with an asymptotically flat (Λ = 0) bubble would necessarily

have dramatic consequences. Once the singularity of the crunch enters the asymptotically

flat region, it might seem that there are only two possibilities: the singularity could continue

across all space causing the flat bubble to end in a crunch, or it could end, violating

cosmic censorship (see Fig. 1). Cloaking the singularity behind a horizon seems to violate

Hawking’s theorem [4] stating that four dimensional black hole horizons must be spherical.

Λ>0 Λ>0

Λ=0Λ<0

?

Λ>0

r=0
r= 8

r= 8

r= 8

Fig. 1: Bubbles with zero and negative cosmological constant can collide. The

heavy black line denotes the curvature singularity which always forms in the Λ < 0

bubble. The Λ = 0 bubble always includes a piece of future null infinity. We will

investigate what happens to the future of the collision.

We study these collisions and show that while it is possible to find situations where

the singularity cuts off all space, they correspond to an unphysical choice of parameters

which cannot arise in a supersymmetric theory. When the Λ = 0 bubble is supersymmetric

the collision is much more mild. This is consistent with our intuition that supersymmetric

states are stable.
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If the tension of the domain wall [5] connecting the crunching bubble and the flat one

exceeds the minimum allowed by supersymmetry, the BPS bound, then the singularity

never really enters the flat bubble. The boundary between the two bubbles accelerates

away from the flat bubble. If the tension saturates the BPS bound then the singularity

does enter the flat bubble, but it remains inside a hyperbolic black hole. The hyperbolic

symmetry of the black hole follows from the symmetry of the problem – expanding spherical

bubbles intersect in hyperbolas. Hawking’s theorem is evaded since it requires that energy

densities are always positive, which is not the case when the crunching bubble has Λ < 0.

Supersymmetry is not crucial to the above argument, except to bound the tension of

the domain wall. Put another way, supersymmetry guarantees that the Minkowski vac-

uum is completely stable. Even without invoking supersymmetry, we find that if the static

Minkowski vacuum is stable, bubbles of the Minkowski vacuum will be stable cosmologi-

cally, in the sense that they are not destroyed by crunching bubbles. In our analysis large

tension in the final domain wall guarantees that the wall expands out to infinite size. This

may hold true more generally; it would be interesting to ask if the results of [6], who

consider colliding domain walls in a slightly different context, would change for sufficiently

large tension.

In the next section we analyze the bubble collisions using a thin wall approximation in

an effective field theory of gravity coupled to a scalar field. This includes a description of

the appropriate background solutions with hyperbolic symmetry and matching conditions.

(Some details are relagated to an appendix.) In section 3 we estimate various parameters

that appear in the problem and discuss when the thin wall approximation is valid. In

section 4 we consider possible complications such as going beyond the thin wall approxi-

mation and violating the hyperbolic symmetry. Finally, we discuss the effect of multiple

collisions in section 5.

2. Effective Field Theory Description and Thin Wall Approximation

2.1. General framework

To begin our investigation of the collision of these bubbles, we consider gravity coupled

to a scalar field with potential V (φ). We require that V have three local minima, one with

V > 0, one with V = 0 and one with V < 0. This will allow us to consider a solution that

starts in de Sitter space and nucleates bubbles with both zero and negative cosmological

constant. Since we expect our underlying theory to be supersymmetric, we will also require

that V can be derived from a superpotential via

V = 2W ′2 − 3
W 2

m2
p

(2.1)
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Given V , this is a first order ODE for W which almost always has solutions. However we

require that W ′ = 0 at the local minimum where V = 0. This imposes a restriction on V

relating the depth of the negative minimum to the potential barrier separating it from the

V = 0 minimum.

The spacetime describing a single bubble in four dimensions has SO(3, 1) symmetry.

A solution with two bubbles has a preferred direction connecting the center of the bubbles.

However it still preserves an SO(2, 1) symmetry acting orthogonally. This means that

the colliding bubble spacetime is analogous to a spherically symmetric spacetime, with

the two-dimensional spheres replaced by two-dimensional hyperboloids. In general, the

hyperboloids could be timelike or spacelike, but we will see that in the region of interest,

the hyperboloids are always spacelike, so our metrics will depend on only one time and

one space direction.

2.2. Background metrics

To study what happens after the collision, we will use a thin wall approximation.

The conditions under which this is justified will be discussed in the next section. In this

approximation, the scalar field is constant and sitting at a local minimum of the potential

on both sides of the wall. So the spacetimes can be constructed by gluing together solutions

with the appropriate cosmological constant and hyperbolic symmetry. We now review these

solutions.

For spherical symmetry, there is a well known uniqueness theorem. It turns out that

there is a similar uniqueness theorem for hyperbolic symmetry [7,8]. In other words, there

are no hyperbolic gravitational waves. The unique solution with negative cosmological

constant is [9,10]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dH2

2 (2.2)

where

f(r) =
r2

ℓ2
− 1 − 2GM

r
(2.3)

and

dH2
2 = dρ2 + sinh2 ρdϕ2 (2.4)

is the metric on a unit hyperboloid. When M = 0, this metric is simply AdS with radius

ℓ in hyperbolic coordinates, and r = 0 is a coordinate singularity. For all M 6= 0, r = 0 is

a curvature singularity.

These solutions have the unusual property that there is a horizon even when the mass

parameter M is negative, provided GM > −ℓ/3
√

3. For all M above this bound, (2.2)

describes a black hole with horizon at f = 0. This is an infinite area, hyperbolic event

horizon. It is clear that Hawking’s theorem stating four dimensional black hole horizons
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must be spherical does not apply when the energy density can be negative. For M more

negative than the bound, the solution has a naked timelike singularity and no horizon.

When M is negative but above the bound, the singularities are timelike and there is an

inner horizon as well as the event horizon. The positive mass solutions have a spacelike

singularity and no inner horizon. When M is very small, the horizon is close to the AdS

radius, so all positive mass black holes have a horizon radius rh > ℓ. Even allowing for

negative M , the horizon radius cannot be arbitrarily small. All black holes have rh ≥ ℓ/
√

3.

The temperature of these black holes is

T =
3r2

h − ℓ2

4πrhℓ2
(2.5)

which is positive for all black holes. One can check that the specific heat is also positive,

so these black holes can be in thermal equilibrium with their Hawking radiation for both

positive and negative M .

In terms of the AdS/CFT correspondence, these black holes are dual to a thermal

state of the CFT on a hyperboloid. At first sight this is puzzling since conformal invariance

requires that the scalars have a term in their lagrangian proportional to φ2R where R is

the scalar curvature of the boundary metric. If R < 0 there appears to be an instability.

However, modes on a hyperboloid have a mass gap, and this is just enough to compensate

for the negative scalar curvature and remove the instability. An easy way to see that this

cancellation must occur is to note that the boundary metric ds2 = −dt2+dH2
2 is conformal

to ds2 = −dt̂2 + t̂2dH2
2 which is just flat space. Since the dual field theory is conformally

invariant, there cannot be an instability.

We now turn to solutions with Λ = 0. The only vacuum solution with hyperbolic

symmetry is

ds2 = − dt2

h(t)
+ h(t)dz2 + t2dH2

2 (2.6)

where

h(t) = 1 − t0
t

(2.7)

Setting t0 = 0 yields flat spacetime in Milne-like coordinates. For positive t0 there is a

timelike curvature singularity at t = 0 (see Fig. 2). Since the singularities are timelike,

this spacetime does not describe a black hole. Nevertheless, we refer to this solution as

the “hyperbolic Schwarzschild” solution, because the metric resembles that of an ordinary

Schwarzschild black hole.

2.3. Matching the solutions

We initially have two thin walls in a de Sitter background: one surrounding a bubble

of Minkowski space and the other surrounding a bubble of AdS. Each wall is expanding
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t=

t=0

8

t=0

t= 8 8t=

t= 8
Fig. 2: The Penrose diagram for the “hyperbolic Schwarzschild” spacetime. Each

point represents a hyperboloid and the singularities are timelike. We will only be

interested in the region to the future of the surface t = t0 (denoted by the dashed

line), so these singularities will not enter our discussion. The “wedges” will be

explained in section 2.5.

and its intrinsic geometry is a three dimensional (timelike) hyperboloid. They collide in a

two dimensional (spacelike) hyperboloid. After the collision, a new domain wall emerges

separating the Λ = 0 and Λ < 0 bubbles. In addition, scalar radiation can be emitted by

the collision and enter each bubble. For now, we will model this as an instantaneous shell

of null fluid, and consider generalizations later. Since the H2 symmetry must be preserved,

the effect of this radiation is simply to allow M and t0 to be nonzero in the metrics after

the radiation is emitted.

The general situation is shown in Fig. 3. We have five different regions of spacetime

separated by five thin shells. The two incoming bubble walls are denoted 1 and 2, while

the final wall is denoted f. We first discuss the matching across the two null shells, and

then turn to the timelike ones. Let lµ be tangent to the null geodesic generators of the

shell. The stress tensor takes the form

Tµν = σlµlνδ(shell) (2.8)

Since the metrics of interest have SO(2, 1) symmetry, there is a unique null vector nµ

orthogonal to H2 normalized so that nµlµ = −1. Let hij be the two dimensional metric

on the hyperboloid, and set k = hij∇inj. The matching condition across the shell is that

the metric is continuous, but k is discontinuous [11,12]

k1 − k2 = 8πGσ (2.9)

On the Λ = 0 side, we are matching (2.6) with t0 = 0 to (2.6) with nonzero t0. Since t

is the radius of the hyperboloid, continuity of the metric means that t is continuous across
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Λ=0

Λ = 0

Λ>0

Λ<0

Λ<0

f

1 2
Fig. 3: In our thin wall approximation, the spacetime near the collision is divided

into five regions. The dotted lines denote outgoing shells of radiation. The solid

lines denote two incoming bubble walls and the outgoing domain wall.

the shell. In the (t, z) coordinates, our null vectors have components

l = a(1, h−1), n =
1

2a
(h,−1) (2.10)

where a is a constant reflecting the freedom to boost our null basis. A short calculation

yields k = h/at, so the matching condition (2.9) yields

t0
at2

= 8πGσ(t) (2.11)

The fact that σ falls off like 1/t2 is expected from conservation of Tµν . We can relate t0 to

the energy released in the bubble collision as follows. At the time of the collision, suppose

an observer following the final domain wall has four-velocity uµ, and the hyperboloids have

radius R. Then if we fix a by requiring u · l = −1, σ(R) denotes the energy density emitted

into the Λ = 0 bubble, and t0 = 8πaR2Gσ(R).

The matching on the Λ < 0 side is similar. Now we are matching (2.2) with M = 0 to

(2.2) with M > 0. Continuity of the metric requires that r be continuous across the shell.

In (t, r) coordinates, the null vectors have components

l = b(f−1,−1) n =
1

2b
(1, f) (2.12)

where b is a constant. It turns out that k = f/br, so the matching condition yields

2M

br2
= 8πσ(r) (2.13)
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If we fix b so that u · l = −1 as above, M = 4πbR2σ(R).

We now turn to the matching across the timelike thin wall that remains after the

bubbles collide. This determines the dynamics of this domain wall and controls the outcome

of the collision in this approximation. (Note that we also need to impose conservation of

energy-momentum at the collision. We discuss this in the appendix.) We are now matching

(2.2) to (2.6) along a timelike surface. We will denote the radii of the hyperboloids as a

function of proper time on the domain wall by R(τ) so the metric on the wall is simply

ds2 = −dτ2 +R(τ)2dH2
2 . One of the matching conditions is that the metric is continuous.

This already has an important consequence. Any timelike surface in the region t > t0 of

(2.6) must have t monotonically increasing, and hence R(τ) must also be monotonically

increasing. We will show in section 2.5 that the collision always occurs in the region t > t0.

This means that the thin wall in (2.2) must always expand outward. It cannot fall into

the black hole.

The second thin wall matching condition is that the extrinsic curvature is discontin-

uous:

∆kij = −8πG(Sij −
1

2
gijS) (2.14)

where Sij is the stress tensor on the wall and ij run only over the three dimensions tangent

to the wall. Assuming Sij takes the form of a perfect fluid, the components of kij in an

orthonormal basis satisfy

∆k00 = −4πG(ρ + 2p), ∆k11 = ∆k22 = −4πGρ (2.15)

In addition, conservation of the stress energy tensor implies

ρ̇ = −2(ρ + p)
Ṙ

R
(2.16)

We will start by considering the case that the stress tensor is dominated by a cosmological

constant, so ρ + p = 0 and ρ is constant.

From the Λ < 0 side, we have

k11 =
1

r
(ṙ2 + f)1/2 (2.17)

while from the Λ = 0 side we get

k11 = ±1

t
(ṫ2 − h)1/2 (2.18)

where the upper sign applies to walls moving in the +z direction and the lower sign is for

walls moving in the −z direction. On the domain wall, r(τ) = t(τ) = R(τ), so the second

junction condition in (2.15) is

(Ṙ2 + f)1/2 ∓ (Ṙ2 − h)1/2 = κR (2.19)
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where we have set κ = 4πGρ. Squaring this twice yields

Ṙ2 + Veff (R) = 0 (2.20)

where

Veff (R) = −h(R) − [f(R) + h(R) − κ2R2]2

4κ2R2
(2.21)

If this equation is satisfied, the other junction condition in (2.15) is automatically satisfied

as well. Plugging in the definitions of f and h from (2.3) and (2.7), the effective potential

is

Veff (R) = −1 +
t0
R

−
[

(κ2 − ℓ−2)R2 + (2GM + t0)R
−1

]2

4κ2R2
(2.22)

We are mainly interested in the behavior for large R. This divides into three cases,

depending on whether κ < 1/ℓ, κ > 1/ℓ, or κ = 1/ℓ. In the first two cases, Veff (R) ≈
−λ2R2 for some constant λ, so R(τ) = eλτ . The domain wall accelerates out to large

radius. On the Λ < 0 side, the domain wall actually makes it out to infinity in finite t

(Fig. 4).

r=0

r= 8

r=0

r= 8

Fig. 4: If κ 6= 1/ℓ, the domain wall accelerates out to infinity in finite time in the

AdS-Schwarzschild black hole. As we explain later, we expect a singularity to form

along the heavy dashed line.

This is because a unit timelike vector (ṫ, ṙ) in (2.2) satisfies

ṫ =

(

1

f
+

ṙ2

f2

)1/2

(2.23)

so with r(τ) = R(τ) = eλτ , the total change in t is

∆t ∝
∫

∞

t1

dτ

r(τ)
< ∞ (2.24)
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On the Λ = 0 side, the domain wall accelerates out to null infinity. With H2 slicing,

there are two null infinities, one corresponding to z → ∞ and the other with z → −∞
(Fig. 2). If we assume the collision takes place at some z < 0, then a κ < 1/ℓ wall

accelerates to z = +∞, cutting off the entire Λ = 0 bubble, while a κ > 1/ℓ wall accelerates

to z = −∞, leaving most of the Λ = 0 bubble untouched. This follows from the matching

condition (2.19). Since we expect the region on the Λ < 0 side to end in a big crunch,

the first case results in a disastrous collision. Fortunately, this case is not possible in

supersymmetric theories as κ = 1/ℓ is the BPS bound. In fact, if κ < 1/ℓ, then flat space

can nucleate bubbles of Λ < 0 and decay, and there are solutions with arbitrarily negative

energy. The more physical situation is the second: κ > 1/ℓ. The complete spacetime in

this case is shown in Fig. 5 and the pieces which go into it are shown in Fig. 6. Since the

domain wall accelerates away from both bubbles, the collision is very mild. The singularity

never really enters the asymptotically flat bubble.

 Λ>0Λ>0 Λ>0

Λ=0Λ<0
(a)

(b)

(c)
(d)

r=

r=0

8

8

r= r= 8

r= 8

Fig. 5: A sketch of the conformal diagram for a collision in which the resulting

domain wall has tension exceeding the BPS bound. In the thin wall approximation,

region (a) is a piece of AdS spacetime, (b) is a piece of the hyperbolic AdS black

hole, (c) is a piece of the hyperbolic Schwarzschild solution, while (d) is a piece of

Minkowski spacetime. Going infinitesimally beyond the thin wall approximation

results in additional singularities to create a diagram like the one shown here. In

the next figure, we show the regions (a), (b), and (c) in more detail.

The third case, when the tension saturates the BPS bound (κ = 1/ℓ), is qualitatively

different. Now, Veff = −1 at large R, so R(τ) = τ . On the Λ < 0 side, the domain

wall expands much more slowly and reaches infinite t (since (2.24) is now logarithmically

divergent) as shown in Fig. 7. On the Λ = 0 side, the domain wall now follows a constant

z surface at late time and reaches timelike infinity. The induced metric on the wall is now

flat. Since the effect of nonzero t0 and M are both negligible at large R, this solution

approaches a BPS domain wall where flat space is glued to AdS along a constant radial

surface in Poincare coordinates. With nonzero t0 and M included, gluing these spacetimes

together yields an asymptotically flat spacetime with a hyperbolic black hole (Fig. 8).
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keepr= 8

(a)

r=0

r=0

r= 8

keep

(b)

r= 88r=

r=0

r=0
keep

(c)

t=

t=0t=0

8 t= 8

Fig. 6: The full diagram, Fig. 5, is constructed from the pieces shown here. In the

thin wall approximation, (a) is the conformal diagram for AdS spacetime in H2

slicing. The top and bottom dot-dashed lines are coordinate singularities where

the size of the H2 goes to zero. The region we use, labelled “keep” in the figure, is

bounded by the domain wall (heavy curved lines) and the shell of radiation emitted

from the collision (dotted line). As described in the text, the thin wall solution has

a Cauchy horizon (thin, short dashes). Going beyond the thin wall approximation,

the Cauchy horizon will be removed by a spacelike curvature singularity (heavy

dashed line). Diagram (b) is the hyperbolic AdS black hole. The region we use

is bounded by the null shell of radiation and the domain wall. The curvature

singularity of (a) must continue across the null shell into (b). Just as in (a), a

Cauchy horizon forms at the point where the domain wall hits the boundary, so

again a curvature singularity must cut off the boundary at the point where the

domain wall hits it. Diagram (c) is the hyperbolic Λ = 0 solution, bounded by

the domain wall and the null shell radiated into the Λ = 0 side of the domain

wall. Note that we do not use the part of the spacetime which contains timelike

singularities.

8r=

r=0

r=0

r= 8

Fig. 7: If the tension saturates the BPS bound, the domain wall reaches infinity

in infinite time outside the AdS-Schwarzschild black hole.
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 Λ>0Λ>0 Λ>0

Λ=0Λ<0

r=0

r= 8

r= 8

r= 88r=

r=0

Fig. 8: Gluing Fig. 7 onto the asymptotically flat bubble yields a hyberbolic black

hole with an asymptotically flat region of spacetime.

In the strict thin wall limit, there is no crunch, since the scalar field is assumed to lie

at the local minimum of the potential. We now ask where the crunch will be if we relax

this assumption. In the κ > 1/ℓ case, we have seen that the domain wall hits infinity in

finite t. Since the AdS infinity is timelike, there is a Cauchy horizon. Boundary conditions

would have to be specified on this boundary in order for evolution to proceed past this

point. Cauchy horizons are usually unstable. One version of cosmic censorship says that

generically they turn into singularities. In our case, even a small amount of scalar radiation

leaking off the domain wall at late time will blue-shift and build up on the Cauchy horizon

causing it to become singular. This is analogous to the instability of the inner horizon of

Reissner-Nordstrom. Even if there is no classical radiation, quantum acceleration radiation

will be emited by the accelerating domain wall, and this can cause the Cauchy horizon to

become singular. So even though the domain wall is far from the black hole singularity, we

expect a singularity to reach infinity at the same point as the domain wall (see Fig. 4.).

We still have to consider the possibility that the crunch might hit the domain wall

before it reaches the boundary at infinity. Fortunately, it is easy to show that this cannot

happen. Suppose it did. The point where the singularity hits the domain wall is determined

from data inside its past light cone. If we consider a spacelike surface soon after the null

shell is emitted, the evolution is determined by the scalar field on a finite extent of r

outside the horizon of the black hole. But we know that a scalar field outside the black

hole decays. It does not blow up in finite time.

In the discussion so far, we have assumed that the collision takes place outside the

horizon of the Λ < 0 black hole. However, we will see in section 2.5 that this is not always

the case. It is possible for the collision to occur inside the past “white hole” horizon. (We

will see that it cannot occur inside the future horizon.) In this case, the constant b in (2.12)

must be negative in order for l, n to remain future directed null vectors. This implies that

M < 0, even though the energy density σ(R) radiated from the collision is positive. In
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keep

(a)

8r= r= 8

r=0

r=0

keep

8

r=0

r= 8

r=0

r=

r=0

r=0

(b)

keep

(c)

t=

t=0t=0

8 t= 8

Fig. 9: In the case that the collision occurs on an H2 with radius of curvature less

than the AdS scale, the situation is slightly different from Fig. 6. In this case, the

null shell of radiation on the Λ < 0 side of the domain wall ends up behind the

white hole horizon. Also (b) is now a hyperbolic AdS black hole with negative M .

other words, some collisions produce a negative mass black hole! However the black holes

with M < 0 are not really exotic: As we mentioned earlier, from the outside, they behave

just like the positive mass ones as long as M is not too negative. If the tension is above

the BPS bound, the spacetime is again described by Fig. 5, where the pieces are now given

in Fig. 9. If the tension equals the BPS bound, the spacetime will again form a hyperbolic

black hole and look like Fig. 8.

2.4. Hyperbolic black holes

We have seen that a bubble collision can produce a new type of asymptotically flat

black hole with a hyperbolic horizon. This occurs when the domain wall tension saturates

the BPS bound. In this case, the big crunch singularity joins onto the black hole singularity

inside the horizon. (The precise way that this happens would require a numerical relativity

calculation.) One novel feature of this solution is that we evade the conventional wisdom

that bubbles of negative cosmological constant always crunch. Since the domain wall moves

out to larger and larger radii, future timelike infinity of the AdS space survives.

Even though the spacetime is asymptotically flat far from the horizon, this black hole

will not Hawking evaporate completely. This is because the spacetime near the horizon
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resembles the hyperbolic AdS black hole. That black hole has positive specific heat and

after evaporating a small amount of energy, it comes into thermal equilibrium with its

Hawking radiation. The domain wall separating this AdS black hole from the asymptoti-

cally flat spacetime is moving out. Once the domain wall is far enough so that radiation

at the black hole temperature is reflected off the AdS curvature, it cannot escape even if

the spacetime is modified at larger radii.

We can estimate the rate of energy loss to the flat space region using the dual CFT

picture. If the domain wall is at radial coordinate r ≫ ℓ this corresponds to field theoretic

momentum scales ∼ r. The probability of having quanta with such momenta in the thermal

black hole state is ∼ exp(−r/T ). Energy loss to the flat space region is controlled by this

factor. The domain wall location depends on field theory time. For the BPS case we

have r(t) ∼ exp(t) and so energy loss is ∼ exp(− exp(t)/T ). This integrates to a finite

total energy loss and so the black hole is stable. Similar considerations show that various

nonperturbative effects are suppressed even more strongly.

2.5. Location of the collision

We have shown in the previous sections that if the domain wall gets to large R, its

late time behavior will be determined by its tension relative to the BPS bound. Naively,

it seems that it should be possible to prevent the domain wall from getting to large R

at all. For example, one could try to make the energy of the collision very large so that

the domain wall ends up behind a black hole horizon and must shrink down to zero size.

Indeed, if the energy density of the radiation emitted onto the Λ = 0 side of the domain

wall is large enough, then the domain wall will be behind the horizon of the hyperbolic

Schwarzschild solution - a confusing region with a timelike singularity.

Luckily, it turns out that the simple assumption that our theory satisfies the null

energy condition is sufficient to prove that the collision is always outside the horizon of

the hyperbolic Schwarzschild solution. Since R increases along every timelike path outside

the horizon, this guarantees that the domain wall reaches R = ∞.

To see the implications of satisfying the null energy condition, it is helpful to use

the notation of “Bousso wedges”[13]. Given a spacetime with H2 symmetry, at any point

one can draw four radial null rays. These are null geodesics which are at rest on the H2.

Two of these null rays will be future directed, and two will be past directed. At a generic

point, the radius of curvature of the hyperboloids will decrease along two of the four rays;

along the other two it will increase. To draw the Bousso wedge, we extend lines from the

vertex in the two decreasing directions. For example, if the radius decreases along both

left-moving null geodesics, we draw the wedge “>” . Recall that Minkowski space in the

H2 slicing has metric

ds2 = −dt2 + dz2 + t2dH2
2 (2.25)
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Fig. 10: “Bousso wedges” indicate in which null directions the curvature radius

of the hyperboloids decreases. Figure (a) is a piece of AdS spacetime, while (b) is

a piece of Minkowski spacetime. The collision occurs at the point marked with a

star(∗). When the collision occurs at R < ℓ, it is “behind the horizon” in AdS, as

shown in (a).

The radial null geodesics satisfy dt2 = dz2. For positive t, the size of the H2’s de-

creases along both past-directed null rays, while for negative t the the size decreases along

the future-directed rays. So Minkowski space has the Bousso-Penrose diagram shown in

Fig. 10(b). The diagram for AdS spacetime is shown in Fig. 10(a).

Now in gluing our spacetimes together, we have two pieces of information. First, when

gluing two spacetimes across a null shell, continuity of the metric guarantees that if the

null shell is increasing in radius as seen from one side, it is also increasing as seen from

the other side of the shell. Also, the null energy condition guarantees that if the radius is

decreasing along a radial null geodesic, it must continue decreasing until it reaches zero.

As explained in Fig. 11, when the collision occurs at R < ℓ we match onto a region

of the hyperbolic Schwarzschild solution in which R is decreasing along both past-directed

rays, as indicated by the wedge in Fig. 11. This is exactly the region outside the horizon!

(The Bousso wedges for the hyperbolic Schwarzschild solution are shown in Fig. 2.) We

have also discovered that R is decreasing along both past-directed rays on the Λ < 0

side of the domain wall. This information guarantees that we are inside the “white hole

horizon”, as shown in Fig. 9(b). We have shown at the end of section 2.3 that when

the collision occurs behind the horizon the mass parameter M becomes negative. But

as we discussed below equation (2.3), if M becomes too negative the black hole horizon

disappears altogether, leaving a naked timelike singularity. Fortunately, such solutions do

not contain any region with the appropriate Bousso wedge ∧, so they cannot be created

in the collision.
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f

Λ<0 Λ = 0

Λ>0

Λ<0 Λ=0

(c)

1 2

f

Fig. 11: This figure demonstrates how to determine the direction of the Bousso

wedge in the spacetime to the future of the collision, when the collision happens at

a radius R < ℓ. Outside the future lightcone of the collision, the wedges have the

behavior shown in Fig. 10. Inside the future lightcone, we do not know the direction

yet, as shown in (a). Continuity of R across the null shell partly determines the

behavior inside the future lightcone, as shown in (b). Here the dots denote the

vertex of the wedge. Now imagine starting in the Λ = 0 region and following the

known decreasing null ray across the final domain wall. This ray is left-moving and

past-directed. R must continue to decrease along this ray after crossing the domain

wall since we have assumed the null energy condition, so in the Λ < 0 region the

left-moving past-directed ray must decrease. We can repeat the same argument

reversing the two sides of the domain wall, leading to the final diagram (c).

One can perform a similar analysis when the collision occurs at R > ℓ. This case is

slightly more subtle. In the AdS spacetime, the collision now occurs outside the horizon

(the region marked ”>” in Fig. 10(a)). In Minkowski spacetime nothing has changed so

the appropriate wedge is still ∧. In the future lightcone of the collision point, the same

logic we used above guarantees that on the Λ < 0 side the wedge is >, so the collision now

occurs outside the horizon of the black hole. Also, we showed in section 2.3 that in this

case the mass parameter M is positive. On the Λ = 0 side of the domain wall, there are two

possibilities which are consistent at this level of analysis: ∧ and >. The latter possibility

would mean that the collision occurs behind the horizon of the hyperbolic Schwarzschild

solution. However, this possibility would lead to a relative minus sign in the junction

condition, that is, the upper sign in (2.19). However, if the tension obeys the BPS bound
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one cannot solve (2.19) with a relative minus sign. So > is inconsistent with the junction

condition, and once again the collision must occur outside the horizon of the hyperbolic

Schwarzschild solution in the region ∧.

Since this argument only relies on the null energy condition and the BPS bound, it

is general. In particular, one could imagine adding excitations to the domain wall which

change its equation of state. Our argument in this section still shows that the collision

occurs outside the horizon of the hyperbolic Schwarzschild solution. As a result, the

domain wall still must grow to infinite R, where its dynamics will be controlled simply by

its tension relative to the BPS bound, as described in section 2.3.

3. Length Scales

In this section we discuss the various length scales involved in this problem and what

values they can take in string theory vacua. In particular we will be interested in justifying

the approximations used in the previous section. The length scales of interest are: the

curvature length ℓ in the AdS vacuum, 1/ℓ2 ∼ ΛAdS ; the curvature length ℓdS in the dS

vacuum, 1/ℓ2
dS ∼ ΛdS ; the width of the domain walls lw; the initial radius of the nucleated

bubbles Rb; and the initial separation of the bubbles.

For supersymmetric vacua we can write Λ ∼ V/m2
p ∼ −|W |2/m4

p where W is the

value of the superpotential in the vacuum1 . In such vacua ℓ ∼ m2
p/W . For the thin wall

approximation used in the previous section to be valid we need lw < ℓ, ℓdS.

For BPS domain walls the tension ρ between vacua 1 and 2 is given by a relation of

the form

ρBPS ∼ W1 − W2 (3.1)

The quantity κ discussed in the previous section is related to ρ by κ ∼ ρ/m2
p. A BPS

domain wall between an AdS and a Λ = 0 supersymmetric vacuuum has tension ρ ∼
W, κ = 1/ℓ. The domain wall between a de Sitter vacuum and a supersymmetric Λ ≤ 0

vacuum is never BPS, but the typical examples of de Sitter vacua in the landscape are

“uplifted” from some supersymmetric AdS vacuum and the tension of the domain walls

need not be much different from the BPS walls connecting to the AdS vacuum before

uplifting. So we will estimate tensions by the rough relation ρ ∼ W . Further we will make

the rough estimate ΛdS ∼ −ΛAdS . The plethora of landscape constructions indicate that

many other values are possible.

The equations of motion governing the domain wall profile give a relation ∆φ/lw ∼
√

V

where V is the characteristic size of the potential in the domain wall region and ∆φ is the

field variation from one side of the domain wall to the other. We expect ∆φ ≤ mp, V ∼

1 For simplicity we suppress the Kahler potential.
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Λm2
p so we have a rough upper bound lw ≤ m2

p/W ∼ ℓ ∼ ℓdS . To justify the thin wall

approximation we would like lw ≪ ℓ, ℓdS. For vacua localized down a warped throat the

characteristic energy scales are reduced relative to mp, the bulk 4D Planck mass, by a large

warping factor. We thus expect moduli excursions between vacua to be small, ∆φ ≪ mp, so

thin wall should hold parametrically. Many of the AdS and dS vacua studied in landscape

constructions are of this type. But the best known Λ = 0 examples, for instance the

large field vacuum in KKLT [14] , are far away in field space from the throat and require

∆φ ∼ mp. (In fact they correspond to decompactification limits of Kahler moduli). Still

these domain walls do not violate thin wall badly, and the results discussed in the previous

section should be a reliable qualitative guide. For parametric control we can turn to the

flux tuned W = 0 vacua discussed in [15]. These vacua have moduli but this should not

alter our basic picture. Candidates for isolated Λ = 0 are described in [16,17] .

Independent of the string model that produces it, all we need is that the potential

comes from a suitable superpotential, as in (2.1), and that both the scale of the superpo-

tential and the characteristic field excursion ∆φ are much less than the four-dimensional

mp. In this case we have lw ∼ (∆φ)2/W and ℓ ∼ m2
p/W . Putting in the additional as-

sumption that the de Sitter radius is of order the AdS radius, we have lw ≪ ℓ, ℓdS. It may

well be possible to construct a “string inspired” model of this type using the framework

discussed in [18].

There is another issue of scales we should discuss. We have been assuming that the

dS bubble decays by Coleman-De Luccia [2] bubble nucleation. This is the case when

ρ2 ≪ ΛdS m4
p. Our rough estimates are on the edge of this region. Otherwise the dS

vacuum decays by what is called the Hawking-Moss process [19]. An appealing picture

of this process is the quantum diffusion of φ to the top of the barrier and across, then a

classical roll down [20] . One result of this will be a nonspherical initial bubble on scales

bigger than ℓdS . At least for relatively late collisions where the portion of bubbles involved

in the collision is a small fraction of the original ℓdS such large scale inhomogeneities should

not be important, as discussed below.

A rough estimate of the initial bubble radius Rb is given by the balance m2
pΛdSR4

b ∼
ρR3

b . For the parameter ranges above this gives Rb ∼ ℓdS . Coleman-Deluccia is valid when

Rb ≤ ℓdS . One way for this to fail is for the amount of uplifting to be fine tuned to be

small, so ΛdS ≪ |ΛAdS |.
For two bubbles to collide, the centers can be separated by a maximum geodesic sepa-

ration given by πℓdS. The de Sitter invariant measure for nucleation gives the probability

distribution for the separation. In the limit that the nucleation rate is small, one finds a

probability density proportional to [22]

f(r) = sin (r/ℓdS) (3.2)

where r is the geodesic separation. This means that the bubbles are likely to be separated
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by of order one de Sitter radius. We have already arranged that the de Sitter radius is

large compared to the thickness of the domain wall. Since the typical bubble separation

is ℓdS, the bubble wall never becomes ultrarelativistic and the scale of energy liberated in

the collision is set by ρ.

We can now estimate the size of the parameters t0, M that appear in the solutions in

the previous section using (2.11),(2.13), and (A.6). The domain walls collide on an H2. If

the bubbles are separated by of order one de Sitter radius, then the H2 will have a radius

R ∼ ℓdS . Under the above assumptions (ℓ ∼ ℓdS, tensions of order the BPS bound), the

parameters t0 and GM turn out to be of order R. Thus the collision takes place around

the horizon. This is not a problem, but it is comforting to know that there is way to ensure

that the collision takes place far outside the horizon. As the bubble separation approaches

its maximum value of πℓdS, the radius of curvature of the H2 at the time of collision

becomes very large. Due to the expansion of the de Sitter space between the bubbles, the

energy density at the collision remains bounded, so σ(R) approaches a constant. Under

these conditions, one can show that the horizon radius satisfies rh = aR for a constant

a < 1. Thus R − rh grows with R and the collision is far outside the horizon. This holds

for both the BPS and non-BPS case. On the other hand, if ℓdS ≪ ℓ, then a typical bubble

collision will have R ∼ ℓdS . Since there are no hyperbolic black holes with rh ≪ ℓ, this

collision will take place inside the (past) horizon. As argued in section 2, this leads to

M < 0. In fact, a typical collision of this type will have GM ∼ −ℓdS .

4. Possible Complications

We have seen that within our approximation the Minkowski bubble is not eaten up

by the AdS bubble; specifically, at least part of future null infinity remains undisturbed all

the way up to timelike infinity. We can consider relaxing our approximation in two ways:

• What happens when we go beyond the thin wall approximation?

• What about fluctuations which break the SO(2, 1) symmetry?

We argue here that there exists a regime of parameters where these corrections are

unimportant. Furthermore, we believe that even in the regime where corrections are

important our simplified model gives a correct picture of asymptotic behavior.

The first place we used the thin wall approximation was in assuming that the radiation

emitted by the collision comes off in a null shell. However numerical simulations of bubble

collisions show that the bubble walls oscillate for several cycles emitting radiation during

each cycle [23,6]. (This is suppressed if the scalar field is complex and there are degenerate

vacua with a large difference in phase between the scalar field in each bubble.) One could

improve our approximation by having radiation come off in a series of null shells, but

this would only cause the parameters M and t0 to increase more slowly. It would not

qualitatively change our conclusions.
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We saw in section 3 that by choosing certain landscape vacua, or more concretely

by demanding that our potential come from a suitable superpotential and asking that

the scale of the superpotential be separated from the four-dimensional Planck scale, we

can make the characteristic thickness of the domain wall small compared to the curvature

scales in the problem. As discussed in section 2, the thin wall approximation necessarily

breaks down in the AdS regions of the geometry, leading to crunches and black holes.

The problem is not that the domain wall is thick on scales of interest, but that the AdS

is unstable to infinitesimal perturbations with the symmetry of our problem. It is the

exponential tails of the domain walls which provide the energy to crunch the AdS space.

There is good reason to believe that even when the domain wall is thick, the evolution

will be qualitatively similar to the thin wall results. Consider the asymptotically flat

region. The key question is whether a solution with a piece of null infinity necessarily has

a complete null infinity (i.e. the null generators can be extended to infinite affine parameter

to the future). This is one version of cosmic censorship, and might appear hard to prove.

However, the existence of hyperbolic symmetry greatly simplifies the problem. In fact, in a

recent paper [24], it was shown that for gravity coupled to collisionless matter, hyperbolic

symmetry is enough to prove this form of cosmic censorship. Presumably a similar result

holds for other reasonable matter fields.

Now consider perturbations which break the symmetry of the background. Such

perturbations are inevitable; for example, the domain wall is in contact with de Sitter

space, which produces fluctuations in the shape of the wall characteristic of the de Sitter

temperature. In addition, when the domain walls collide, there is generically more energy

than is necessary to form the resulting domain wall. We have considered some of this

energy radiating away in a null shell. In addition, some of it can go into excitations of the

outgoing domain wall, and these excitations can be at all wavelengths.

Very long wavelength modes will simply get redshifted away. These can be approxi-

mated as a homogeneous perfect fluid and satisfy (2.16). For example, if the energy den-

sity is increased by the addition of presureless dust, δρ̇ = −2δρ Ṙ/R, so δρ ∝ 1/R2 → 0.

Smaller wavelength modes might coalesce into black holes. The total energy liberated is

of the same order as that required to make a Schwarzschild black hole of radius ℓ in each

area of size ℓ2 on the collision surface. But as long as the additional asymmetry is small

and the collapse time ℓ long compared to decay times of massive particles the fraction of

energy collapsing will be small. So the resulting black holes will have radii much less than

ℓ and will not affect the dynamics in an important way.

We now briefly consider another possible source of singularities. Even when Λ =

0, the collision of plane symmetric gravitational waves produces a spacelike singularity

everywhere to the future of the collision [25]. As discussed above, when our two bubbles

collide, the radius of curvature of the hyperboloid of intersection can be very large. Near
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this surface, the spacetime looks like two almost plane waves colliding. Could this produce

a (catastrophic) singularity everywhere to its future? Fortunately, the answer is almost

certainly no. First of all, our bubbles are colliding in an expanding de Sitter universe and

it has been shown [26] that in this case, the collision of plane waves does not generically

produce curvature singularities. More importantly, there is a qualitative difference between

between plane symmetry and hyperbolic symmetry (even when the hyperbolae have small

curvature): there are no hyperbolic gravitational waves. Without the scalar field, the

solutions are the ones discussed in section 2 which do not have spacelike singularities when

Λ = 0. With the scalar field, the dynamics is expected to be similar to the thin wall

evolution since the field will radiate away its excess energy.

5. Discussion

In recent discussions of inflation, bubbles with different cosmological constant can be

nucleated. Bubbles with Λ < 0 end in a crunch, while supersymmetric bubbles with Λ = 0

are expected to last forever. We have studied the effect of a collision with a crunching

bubble on a Λ = 0 bubble. Of course a typical bubble will encounter many collisions

with other bubbles. If a Λ < 0 bubble is entirely surrounded by Λ = 0 bubbles, the

crunching region is enclosed inside a two-sphere and probably forms an ordinary spherical

black hole, which can then evaporate. Conversely, if a Λ = 0 bubble is entirely surrounded

by crunching bubbles, then there is no asymptotically flat region. Since the energy density

inside the bubble is greater than outside and the surface tension is positive, the bubble

will probably collapse and form a big crunch everywhere.

Generically, a bubble of one type will not be entirely surrounded by bubbles of the

other type. To summarize the effect of multiple collisions consider future null infinity

of the Λ = 0 bubble. Before collisions this has the same structure as the future null

infinity of Minkowski space, a null line cross a spatial sphere. If the tension in the final

domain wall is above the BPS bound (κ > 1/ℓ) it is clear from Fig. 5 that a part of null

infinity including the full asymptotic spatial sphere is left undisturbed. In the BPS case

(κ = 1/ℓ), on the other hand, it is clear from Fig. 8 that just one collision removes part

of the asymptotic spatial sphere. Later collisions remove successively smaller portions of

the asymptotic sphere, eventually producing a fractal. Only a set of measure zero is left

undisturbed. Such fractals are standard in eternal inflation; a similar sequence of collisions

was discussed in [27]. This structure is relevant for the Conformal Field Theory picture

of eternal inflation discussed in [28]. It would be interesting to know how often such BPS

domain walls occur in the landscape.

We can also ask what a timelike observer in the Λ = 0 FRW bubble sees at late times

on his sky. This is relevant for the “census taker” approach to eternal inflation measures
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discussed in [29]. For both κ > 1/ℓ and κ = 1/ℓ this observer will see a fractal of black

disks on the sky. The κ > 1/ℓ domain walls will be accelerating away from the observer

at a constant rate, while the κ = 1/ℓ walls will only be accelerated by the cosmological

expansion, a rate which decreases with time. The acceleration radiation from the κ > 1/ℓ

walls should provide a distinctive signature of this behavior.
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Appendix A. Conservation of energy at collision

At the collision point in the thin wall approximation, we must impose energy and

momentum conservation. Since we are constructing solutions of general relativity, energy-

momentum conservation will be automatic as long as we are careful to solve Einstein’s

equation even at the collision point. It turns out that there is only one condition which

needs to be imposed: the geometry should not have a conical singularity at the collision

point. Because we are using different metrics in different patches around the collision point,

imposing this condition is not trivial. [30] described a convenient method for writing the

condition, and we are able to further simplify their method.

Given a number of domain walls colliding at a point, one can compute the boost angle

β between two adjacent walls. More precisely, choose points on the domain walls which

are at rest on the H2, and compute their relative boost. This is straightforward between

two incoming walls, or between two outgoing walls; for example, one can define the boost

angle by

u1 · u2 = |u1||u2| cosh β12 (A.1)

where ui are the 4-velocities. Between an incoming and an outgoing wall, we define the

boost angle to be negative,

u · v = |u||v| cosh(−β) (A.2)

Note that each of these boost angles can be computed within a single coordinate system,

because we only need to compute the boost between adjacent domain walls. The condition
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of regularity at the collision point is simply that the boost angles should sum to zero:

n
∑

i=1

βi,i+1 = 0 (A.3)

1 2

45 3

β

β

β12

23

3445

β51

β

Fig. 12: The absence of a conical deficit at the collision point leads to a constraint

on the relative boosts β of the colliding domain walls, equation (A.3).

An example is illustrated in Fig. 12. One can include null shells in this formalism

by taking an appropriate limit of a timelike domain wall; in this limit some of the boost

angles will diverge but the sum of the boost angles will remain well-defined.

In the case of interest, we have two incoming domain walls and one outgoing domain

wall, and two outgoing null shells of radiation. Each domain wall is characterized by the

proper time derivative of the size of the H2 along the domain wall, which we denote by

Ṙ1, Ṙ2 for the incoming walls and Ṙf for the outgoing wall. The regularity condition can

be written in terms of these “velocities” and the metrics of spacetimes which are glued

together. After some algebra, we find

cosh−1 Ṙ1√
g
− sinh−1 Ṙ1√

f0

+ cosh−1 Ṙ2√
g
− cosh−1 Ṙ2 + cosh−1 Ṙf√

h
+ sinh−1 Ṙf√

f
=

1

2
log

hf

f0

(A.4)
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with the definitions

g = 1 +
R2

ℓ2
dS

h = 1 − t0
R

f = −1 +
R2

ℓ2
− 2GM

R
f0 = −1 +

R2

ℓ2

(A.5)

Note that, since cosh−1 and sinh−1 are both simply related to logarithms, (A.4) can be

rewritten as an algebraic equation.

At this point, it is confusing how many free parameters exist in the solution. We can

rewrite (A.4) in a way which clarifies this:

cosh−1 ṘfκR√
hf

+
1

2
log

f0

hf
= cosh−1 Ṙ1κ1R√

f0g
+ sinh−1 Ṙ2κ2R√

g
(A.6)

Here κ is related to the tension of the final domain wall as defined earlier, κ = 4πGρ; κ1

and κ2 are defined similarly.

A good way to think about the number of free parameters is the following. First, take

all of the parameters of the underlying theory as fixed: the tensions of all domain walls κi,

and the cosmological constants. Also, fix one initial condition, the separation between the

bubbles. Given this data, the radius of curvature at the collision R and the “velocities”

at the collision Ṙ1, Ṙ2, Ṙf , are determined by the Israel junction conditions. We now have

two unknown parameters, which physically correspond to the energy density in each of the

shells of radiation. Equivalently, the two unkowns are the two “mass” parameters t0 and

M , which are hiding in the functions h and f in (A.6). The regularity condition (A.6)

provides one constraint on these two parameters. Microphysics, e.g., the form of the scalar

potential, clearly fixes all these parameters. In the absence of a full solution of the field

equations it seems reasonable to assume that the shells of radiation have roughly equal

energy densities.
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